Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov–Galerkin method

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov-Galerkin method

The most recent update of financial option models is American options under stochastic volatility models with jumps in returns (SVJ) and stochastic volatility models with jumps in returns and volatility (SVCJ). To evaluate these options, mesh-based methods are applied in a number of papers but it is well-known that these methods depend strongly on the mesh properties which is the major disadvan...

متن کامل

Pricing American Options under Stochastic Volatility : A New Method Using

This paper presents a new numerical method for pricing American call options when the volatility of the price of the underlying stock is stochastic. By exploiting a log-linear relationship of the optimal exercise boundary with respect to volatility changes, we derive an integral representation of an American call price and the early exercise premium which holds under stochastic volatility. This...

متن کامل

Efficient Numerical Methods for Pricing American Options Under Stochastic Volatility

Five numerical methods for pricing American put options under Heston’s stochastic volatility model are described and compared. The option prices are obtained as the solution of a two-dimensional parabolic partial differential inequality. A finite difference discretization on nonuniform grids leading to linear complementarity problems with M -matrices is proposed. The projected SOR, a projected ...

متن کامل

Pricing American Options under Stochastic Volatility

This paper presents an extension of McKean’s (1965) incomplete Fourier transform method to solve the two-factor partial differential equation for the price and early exercise surface of an American call option, in the case where the volatility of the underlying evolves randomly. The Heston (1993) square-root process is used for the volatility dynamics. The price is given by an integral equation...

متن کامل

Pricing Higher-Dimensional American Options Using The Stochastic Grid Method

This paper considers the problem of pricing options with early-exercise features whose payoff depends on several sources of uncertainty. We propose a stochastic grid method for estimating the upper and lower bound values of high-dimensional American options. The method is a hybrid of the least squares method of Longstaff and Schwartz (2001) [22], the stochastic mesh method of Broadie and Glasse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Numerical Mathematics

سال: 2017

ISSN: 0168-9274

DOI: 10.1016/j.apnum.2017.01.015